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Recommendation systems are pivotal in improving user experience on various digital platforms. However, observational
training data in recommendation systems introduce selection bias, which leads to a distributional discrepancy between
training data and real-world scenarios, resulting in suboptimal performance. Current causal debiasing methods such as inverse
propensity score and doubly robust rely on accurately estimated propensity scores, typically optimized through negative
log-likelihood (NLL) minimization. However, recent studies have highlighted the limitations of this approach, as perfect NLL
minimization may not adequately correct for selection bias. To address this issue, we propose Wasserstein Balancing Metric
(WBM), a novel metric that measures and enhances the balancing capacity of propensity scores in causal debiasing methods by
minimizing the Wasserstein discrepancy between reweighted populations. On the basis, we introduce IPS-WBM and DR-WBM,
incorporating WBM as a regularizer in standard inverse propensity score and doubly robust estimators, which enhances
causal balancing capacity without introducing additional bias. Extensive experiments on three real-world recommendation
datasets demonstrate that our methods improve the causal balancing capability of learned propensities and enhance debiasing
performance.

CCS Concepts: • Information systems→ Recommender systems; • Computing methodologies→ Causal Inference.

Additional Key Words and Phrases: Recommender System; Causal Inference; Selection Bias; Entire Space; Selection Bias;
Multi-Task Learning; Post-click Conversion Rate Estimation

1 INTRODUCTION
Recommendation systems have become integral components of modern digital platforms. By analyzing user
historical interactions and behaviors, personalized suggestions are generated to enhance user satisfaction and
engagement. For instance, e-commerce giants like Alibaba [36, 53] utilize recommendation systems to suggest
products that match a user’s browsing history and purchase patterns, thereby increasing the conversion rate and
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transaction volume. Streaming services such as Kuaishou [15, 16] and Tiktok [51] rely on content recommendation
engines to curate movies, TV shows, and music playlists tailored to individual tastes, improving user immersion
duration and video completion rate. In social media, platforms like Twitter [50] employ recommendation mecha-
nisms to present content that resonates with user interests, enhancing user retention on the platform. The pivotal
role of recommendation systems in driving user experience and business value underscores their significance in
the digital era [21, 28, 64].

A unique challenge in recommendation systems is the reliance of training on observational data collected
from user interactions, which introduces selection bias [8, 55]. Specifically, the data collected are missing not at
random [67], a common yet challenging pattern of missing data [5, 56], which causes the observed data to under-
represent the broader user population and all possible item interactions [4, 59]. For example, in rating prediction
tasks, users are more likely to rate items they have a strong opinion about—either positively or negatively—leading
to a dataset skewed towards extreme ratings and under-representing neutral or unrated items [25, 27]. In click-
through rate prediction, users are predominantly exposed to items that the current recommendation system
deems relevant, causing future data to be biased towards items with historically higher clicks [39]. This selection
bias manifests as a distributional discrepancy between the training data and the test scenario, where the objective
is to provide online service to all users and items. Such discrepancies can adversely affect the generalization
ability of the model, leading to suboptimal online service performance where recommendations do not align
with true user preferences [63, 65, 67].

To mitigate the effects of selection bias, causal methods play a crucial role in debiased recommendation by
constructing unbiased estimators of the learning objective using biased observational data [4, 46, 61]. The central
idea of causal methods is to adjust the weights of the samples from the biased population to approximate the
distribution of an ideal unbiased population. An important approach is the Inverse Propensity Score (IPS) [43, 45],
which reweights each sample by the inverse of its propensity score, the probability of the sample being treated
under the current policy. By doing so, IPS aims to create a pseudo-population where the expectation of observed
samples mirrors that of a randomized experiment. Another prominent method is the Doubly Robust (DR)
estimator [11, 17, 29], which combines IPS with outcome modeling to correct for bias and reduce variance. DR
leverages both the estimated propensity scores and imputed outcomes to achieve unbiased learning against
misspecification in either component, providing more reliable estimates even when the estimated propensity
scores are imperfect [24, 29].

The effectiveness of IPS and DR estimators critically relies on the accurate estimation of propensity scores [26].
Propensity scores represent the likelihood of observing or treating each sample under the current recommendation
policy and are central to correcting selection bias. Current methodologies primarily optimize the propensity
estimator by minimizing the negative log-likelihood (NLL) based on observed data [53, 67]. However, recent
studies have doubted the rationale of this approach [26]: a propensity estimator that minimizes NLL simplifies the
IPS and DR to the naive average [53] and the EIB estimator [37], respectively. These simplified estimators fail to
account for selection bias, leading to biased estimates of the learning objective. Therefore, relying solely on NLL
minimization, despite its empirical efficacy in many practices [11, 45, 53, 67], is insufficient to train propensity
estimators in debiased recommendation. Consequently, there is a pressing need for more tailored metrics or
learning objectives to enhance the balancing capability of learned propensity scores, ensuring the effectiveness
of prevailing debiased estimators in recommendation systems [26, 30].

Recognizing that the primary role of propensity scores is to reweight biased samples towards a balanced
representation of the population, it is intuitive to learn propensity scores by directly minimizing the discrepancy
between the reweighted distributions. Building upon this insight, we introduce the Wasserstein Balancing Metric
(WBM), an innovative metric for measuring and enhancing the balancing capacity of propensity scores. WBM is
calculated with theWasserstein discrepancy [9], a mathematical tool from optimal transport theory, to quantify the
discrepancy between the reweighted populations. Minimizing WBM during the training of propensity estimators
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Fig. 1. Causal graphs in the context of debiased recommendation.

can effectively enhance the capability of the learned propensity scores to balance biased populations. Moving
forward, we propose the IPS-WBM and DR-WBM estimators, which integrate WBM as a regularization term into
the standard IPS and DR estimators. This integration enhances the balancing capability of the propensity scores
without introducing additional bias into the estimators, thereby achieving more effective debiasing. Finally, we
validate the effectiveness of our proposed methods through comprehensive experiments on three real-world
recommendation datasets.

Contributions. Our contributions can be summarized as follows.
● We propose theWBM, a novel metric that refines NLL for measuring and enhancing the balancing capacity

of propensity scores in recommendation systems.
● We develop the IPS-WBM and DR-WBM estimators, incorporating WBM as a regularizer into the standard

IPS and DR estimators, which improves the balancing capability of propensity scores without introducing
additional bias. We provide unbiasedness conditions of the estimators based on the minimization of WBM.
● We perform experiments on three real-world recommendation datasets. The results showcase that WBM

effectively boosts the balancing capability of the learned propensities and significantly improves debiasing
performance.

Organizations. The remaining sections are structured as follows: Section 2 encapsulates technical background
to understand the methodology and contributions in this work; Section 3 formulates WBM and theoretically
justifies its balancing property; On this basis,Section 4 constructs counterfactual estimators, formalizes the
unbiasdness conditions, and delineates the computational workflow for debiased recommendation; Section 5
presents experiments to verify the efficacy of the proposed methods; Section 6 offers a brief literature review
regarding debiased recommendation and propensity estimation; Section 7 discusses conclusions, limitations and
future works.

2 PRELIMINARIES
In this section, we first formalize the debiased recommendation task in the potential outcome framework.
Subsequently, we give a brief introduction to optimal transport, a mathematical tool for quantifying distribution
discrepancy. The important notations are summarized in Table 1.

2.1 Potential Outcomes Formalization of Recommendation
We denote by U = {D} the set of users, and by I = {8} the set of items. In the context of a recommendation system,
using the potential outcome framework necessitates the definition of several key elements. (1) Covariate GD,8 : the
features of user D and item 8 , such as user profiles (age, gender, historical interests, etc.) and item characteristics
(price, category, etc.); (2) Treatment >D,8 : the indicator noting whether the feedback AD,8 is observed (>D,8 = 1)
or missing (>D,8 = 0); (3) Outcome AD,8 : the feedback from user D to item 8 , such as a rating, click, or conversion;
(4) Potential Outcome A (>)D,8 : the hypothetical feedback if >D,8 is set to > ; (5) Ideal population D = U × I : the
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Table 1. List of important notations.

Notation Description
Notations for Debiased Recommendation
GD,8 The covariate indexed by user D and item 8 .
>D,8 The treatment indicator indexed by user D and item 8 .
AD,8 The outcome indexed by user D and item 8 .
A
(>)
D,8 The counterfactual outcome if we make a treatment > on user D and item 8 , with its estimate ÂD,8 .
@D,8 The propensity scores indexed by user D and item 8 , with its estimate @̂D,8 .
4D,8 The error of outcome prediction indexed by user D and item 8 , with its imputed value 4̂D,8
Notations for Optimal Transport
U, V The treated and untreated populations.
U ′, V′ The treated and untreated populations after reweighting.
n,m The numbers of samples in U and V , respectively.
D The pair-wise Euclidean distance.
P The transport matrix.
a, b The mass vector recording the mass of units in U and V .
a′, b′ The mass vector recording the mass of units in U and V .
W The Wasserstein discrepancy.
Π The constraint set of OT.
⟨⋅, ⋅⟩ The operation of inner product.
n The strength of entropic regularization.

complete set of user-item pairs; (6) Treated population O: The subset of D where >D,8 = 1. Based on these
elements, debiased recommendation can be represented as the causal graphs in Figure 1.

A widely adopted counterfactual query in debiased recommendation is: “What would the feedback be if an
intervention were made on a user?” This translates to estimating the causal estimand E[A (1)D,8 ∣GD,8], which predicts
the potential outcome using covariates. Such modeling can reinterpret recommendation tasks as causal problems
as follows [59, 61]:

(1) Rating prediction: Predict the rating A (1)D,8 if >D,8 is forcibly set to 1 [28]. The treatment >D,8 = {0, 1} indicates
whether the user D rates the item 8 . The potential outcome A (1)D,8 denotes the true rating of the user D for
the item 8 if we force >D,8 = 1 [25, 27, 28, 30].

(2) Post-view click-through rate (CTR) prediction: Estimate the CTR A
(1)
D,8 assuming exposure of the item 8 to

the user D. The treatment >D,8 = {0, 1} indicates whether the item 8 has been exposed to the user D. The
potential outcome A (1)D,8 denotes the click-through rate if the item 8 is deliberately exposed to the user
D [39, 71].

(3) Post-click conversion rate (CVR) prediction: Compute the CVR A
(1)
D,8 assuming that user D has clicked the

item 8 . The treatment >D,8 = {0, 1} indicates whether the item 8 has been clicked by the user. The potential
outcome A (1)D,8 denotes the conversion rate assuming the user D has clicked the item 8 . Immediately, CVR
can be represented as E[A (1)D,8 ∣GD,8] [49, 55, 68].
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To estimate A (1)D,8 using GD,8 , we define the prediction model ÂD,8 = 5 (GD,8). The ideal learning objective, given by

Lideal =
1

∣D∣
∑

(D,8)∈D
4D,8 , (1)

where 4D,8 is an error measure like cross entropy. However, the outcomes are only observed in the treated
population (O), which makes Lideal incomputable. A naive but common shortcut is to estimate the learning
objective over O:

Lnaive =
1

∣D∣
∑

(D,8)∈O
4D,8 , (2)

where ∣D∣ denotes the number of samples in the ideal population. Nonetheless, AD,8 is missing not at random. For
instance, in rating prediction, individuals are more inclined to rate items that capture their interest; similarly, in
CTR prediction, users are more likely to be exposed to items they are predisposed to click. Therefore, there is
a distribution discrepancy between O and D, which stems from the confounding effects of GD,8 . Therefore, the
naive approach based solely on the treated population O is biased compared to the ideal loss Lideal, resulting in
sub-optimal performance.

To counteract the confounding bias and construct an unbiased estimator of Lideal, the recommendation
community has focused on causal-inspired techniques [3, 29, 53]. The central idea is to adjust the weights of
samples in O to approximate the ideal population D. A notable technique is the inverse propensity score (IPS)
method [46], which uses the propensity score to inversely weight observed events, defined by:

LIPS ∶= E(D,8)∈D [
>D,84D,8

@D,8
] , (3)

where @D,8 represents the propensity score. The IPS method assigns higher weights to less likely observed
events to neutralize selection bias. Theoretically, LIPS is an unbiased estimator of Lideal if the propensity scores
are accurately estimated. However, a significant defect with IPS is its dependency on precise propensity score
estimation, which can be challenging to achieve in practice. To address this issue, the doubly robust (DR) estimator
[42, 46] introduces an error imputation technique, defined by:

LDR ∶= E(D,8)∈D [4̂D,8 +
>D,8(4D,8 − 4̂D,8)

@D,8
] , (4)

where 4̂D,8 represents the imputed error and (4D,8 − 4̂D,8) is the residual error after imputation. This design makes
LDR doubly robust, providing an unbiased estimate if either the imputed errors 4̂D,8 or the propensity scores @D,8
are accurately determined.

2.2 Optimal Transport
Optimal Transport (OT) is a mathematical framework designed to quantify the discrepancy between two distribu-
tions by identifying the minimum cost required to transform one distribution into the other. Originally proposed
by Monge [38], the formulation involved finding an optimal mapping between two continuous distributions,
which posed challenges related to the existence and uniqueness of solutions. Addressing these issues, Kantorovich
[18] proposed a more computationally feasible approach, defined as follows:

Definition 2.1. (Wasserstein discrepancy) Consider empirical distributions U = U1∶n and V = V1∶m, each with n
and m samples, respectively. The Kantorovich problem seeks an feasible plan P ∈ Rn×m

+ to transport U to V at the
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minimum possible cost:
W(U, V) ∶= min

P∈Π(U,V)
⟨D,P⟩ ,

Π(U, V) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

P8,1 + ... + P8,m = a8 , 8 = 1, ...,n,
P1, 9 + ... + Pn, 9 = b9 , 9 = 1, ...,m,

P8, 9 ≥ 0, 8 = 1, ...,n, 9 = 1, ...,m,

(5)

whereW(U, V) denotes theminimum transport cost, also known as theWasserstein discrepancy [14, 41];D ∈ Rn×m
+

represents the pairwise distances calculated as D8, 9 = ∣U8 − V 9 ∣
2
2; a = [a1, , an] and b = [b1, , bm] are the masses of

samples in U and V , respectively; Π defines the set of constraints.

The formulation above is a linear programming problem solvable via convex optimization techniques [12].
Moreover, the solution process can be accelerated through the Sinkhorn algorithm [2] which merely consists
of tensor multiplications compatible with graph processing unit backends. The Wasserstein discrepancy has
advantageous properties, which makes it versatile in diverse applications, such as sampling algorithm design [6,
32, 52], domain adaptation [9, 73], data imputation [57, 58], cross-domain recommendation [33–35] and causal
inference [47, 54].

3 WASSERSTEIN BALANCING METRIC FOR PROPENSITY SCORE ESTIMATION

3.1 The Central Role of Propensity Score in Causal Methods for Debiased Recommendations
Propensity score estimation plays a critical role in debiased recommendations, which refers to the probability of
a sample being treated. The unbiasedness of the IPS-based estimators depends on the accuracy of the learned
propensity scores. Therefore, to enhance the accuracy of propensity estimation, diverse techniques have been
developed. Wang et al. [53] proposes a multitask learning approach to train the propensity model and potential
outcome prediction model simultaneously. Li et al. [26] proposes a balancing penalty to facilitate the training of
the propensity model. Li et al. [24] proposes a doubly robust learning approach that incorporates the estimated
propensity scores to the training process of the imputed errors. Chen et al. [3], Zheng [69] suggested incorporating
a small unbiased dataset to enhance propensity estimation that is resilient to unobserved confounding effect.

Some might argue that the DR estimator is unbiased when the error imputation is accurate, regardless of
the accuracy of the learned propensity scores. However, the training of the imputed errors relies heavily on
accurately learned propensity scores [11, 26]. Specifically, the error imputation model 4D,8 is typically trained by
minimizing

Limp = ∑
(D,8)∈D

>D,8(4̂D,8 − 4D,8)
2

@̂D,8
,

where @̂D,8 is the estimated propensity. Therefore, if the learned propensity scores are less accurate, the imputed
errors are likely to be inaccurate, resulting in biased DR estimates and even bias amplification.

Given the widespread and important role of propensity scores in debiased recommendations, we aim to establish
a unified propensity training standard. Importantly, there are several questions that need to be answered [26].
How to learn propensity that is more helpful for debiasing performance? Is it plausible to merely pursue the
accuracy of >D,8 as accurately as possible? Which metric reasonably measures the quality of the learned propensity
scores?

3.2 Analysis on Prevailing Propensity Score Estimators
In this section, we examine prevalent methods for propensity estimation and analyze their limitations for debiased
recommendations. Early techniques estimate propensity based on item popularity [44, 46]. While these methods
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(a) Results with logistic regression, with the propensity estimation accuracy being 0.675, 0.75, 0.85 and 0.975 from left to right.
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Fig. 2. The balancing capability of the balancing scores calculated by propensity estimators: the logistic regression model in
(a) and the support vector machine in (b). The dark area indicates the (uniform) weight of samples in U and V ; the light area
indicates the weight of samples in the reweighted sets U ′ and V

′. The dashed black line indicates the decision boundary.
W(U

′
, V
′
) indicates the discrepancy between the reweighted sets.

are easy to implement and understand, they frequently lead to biased recommendations due to their oversimplified
assumptions.

More recent studies have shifted towards parametric models for propensity estimation [11, 53], optimized with
the negative log-likelihood (NLL) defined as:

L? =
1

∣D∣
∑

(D,8)∈D
[−>D,8 log(@̂D,8) − (1 − >D,8) log(1 − @̂D,8)] ,

where @̂D,8 is the estimated propensity. However, minimizing NLL does not necessarily guarantee improved
debiasing performance [26]. For instance, an ideal estimator minimizing NLL (where @̂D,8 = 1 for treated and
@̂D,8 = 0 for untreated samples) could reduce the IPS estimator to a naive estimator:

Lnaive =
1

∣D∣
∑

(D,8)∈O
4D,8 , (6)

which merely averages the outcomes over the treated data, thereby producing biased estimates against Lideal
defined in the target population. Similarly, the ideal propensity estimator degrades the DR estimator to an Error
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Imputation-Based (EIB) estimator [37, 67]:

Leib =
1

∣D∣
∑

(D,8)∈D
>D,84D,8 + (1 − >D,8)4̂D,8 ,

which loses the doubly robustness since its unbiasedness necessitates the unbiasedness of the error imputation
model 4̂D,8 . Therefore, while parametric models represent an advance for propensity estimation, the minimization
of NLL does not suffice to train propensity for debiased recommendation. It underlines the need for further
research into more tailored metric to train propensity estimator that makes the reweighted distributions balanced
almost surely.

Case Study. To support the assertion that minimizing NLL alone is inadequate for debiased recommendation
training, a case study was conducted in Figure 2. This toy dataset includes treated populations (U) and untreated
populations (V), with increasing discrepancies across the panels from left to right. Reweighted sets U ′ and V′ are
created by inversely weighting U and V with @D,8 and 1 − @D,8 , respectively. Key observations are summarized as
follows.

● Propensity learned by minimizing NLL facilitates balancing distributions. The estimated propensity tends
to be lower for less likely treated samples. Therefore, the weighting mechanism in IPS assigns higher
weights to less likely treated samples, which facilitates reducing selection bias and approximating the
ideal population D.
● Enhanced accuracy in propensity estimation does not guarantee more balanced distributions almost surely.

As shown in Figure 2 (a), despite increasing propensity estimation accuracy from 0.675 to 0.975, the
discrepancy between reweighted populations rises from 0.78 to 6.98. Moreover, comparing the propensity
models of logistic regression in Figure 2 (a) and support vector machine in Figure 2 (b), the support
vector machine effectively enhances propensity estimation accuracy yet fails to enhance the balance of
re-weighted populations.

3.3 Wasserstein Balancing Metric
The role of propensity score is to re-weight biased populations towards a balanced state. This objective suggests
that propensity score estimation could effectively be achieved by minimizing the discrepancy between the
reweighted populations. To quantify distribution discrepancies, Wasserstein discrepancy provides a natural and
effective approach, which has been widely employed in various contexts such as vision [9], natural language
processing [62], and generative models [7, 40]. The Wasserstein discrepancy can be calculated by computing the
OT problem in Definition 2.1.

Definition 3.1. (Wasserstein Balancing Metric, WBM) Consider empirical distributions U = U1∶n and V = V1∶m,
q ∈ Rn+m represents the propensity score under optimization. WBM is defined as the Wasserstein discrepancy
between the reweighted populations U ′ and V′:

WBMq(q) ∶= min
P∈Π(U ′,V′)

⟨D(q),P⟩ ,

Π(U ′, V′) ∶= {P1m = a
′, P⊺1n = b

′, P ≥ 0} ,
(7)

where q(⋅) denotes the representation function of a sample, D(q) ∈ Rn×m
+ represents the pairwise distances

calculated as D(q)8, 9 = ∣∣q(U8) − q(V 9)∣∣
2
2, a′ = Softmax([1/@1, . . . , 1/@n]) and b′ = Softmax([1/(1 − @1), . . . , 1/(1 −

@m)]) are the reweighted mass vectors of the samples; Softmax is used to normalize the mass vectors.

On this basis, we introduce the Wasserstein Balancing Metric (WBM), a novel metric designed to enhance the
balancing capability of the propensity score estimates. Formally defined in Definition 3.1, WBM quantifies the
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Wasserstein discrepancy between the reweighted populations, U ′ and V′, which are obtained by applying the
inverse propensity scores to U and V . This metric directly evaluates how well the propensity scores balance the
two populations. Furthermore, in Theorem 1, we theoretically demonstrate that the WBM reaches zero if and
only if the populations weighted by learned propensity scores are equivalent, which reflects the efficacy of the
WBM to enhance the balancing property of the learned propensity scores.

Theorem 1. (Balancing property) The distributions reweighted by propensity scores q are equivalent, i.e., U ′ = V′

if and only if the WBM is minimized to zero, i.e., WBMq(q) = 0.

Proof. Let U ′ and V′ be the reweighted populations in Definition 3.1. To establish the theorem, it suffices to
prove: (1) U ′ = V′ ⇒W(U ′, V′) = 0; (2)W(U ′, V′) = 0⇒ U ′ = V′. Without loss of generality, we consider the case
= =< for simplicity; the argument extends similarly when = ≠< by appropriately padding with zeros.

Firstly, we prove U ′ = V′ ⇒W(U ′, V′) = 0. Assume that U ′ = V′. In this case, we can construct a transport plan
P where each P8, 9 is zero for all 8 ≠ 9 , and P8,8 = a′8 for all 8 = 1, 2, ..., =. This transport plan naturally satisfies the
marginal constraints since for each 8 and 9 :

<

∑
9=1

P8, 9 = P8,8 = a
′
8 , 8 = 1, 2, ..., =,

=

∑
8=1

P8, 9 = P9, 9 = b
′
9 = a9 , 9 = 1, 2, ...,<.

Evaluating the transportation cost under this plan yields

⟨D,P⟩ =
=

∑
8=1

<

∑
9=1

D8, 9P8, 9 =
=

∑
8=1

D8,8a
′
8 = 0,

which immediately follows from the fact that transporting mass to itself incurs no cost, i.e., D8,8 = 0 for all
8 = 1, 2, ..., =.

Furthermore, sinceW is defined by the minimum over all feasible plan, we have

W(U ′, V′) = min
P∈Π(U ′,V′)

⟨D,P⟩ ≤ ⟨D,P⟩ = 0.

Given that both D and P are non-negative, we haveW(U ′, V′) ≥ 0. Therefore, we haveW(U ′, V′) = 0 if U ′ = V′.
Secondly, we prove W(U ′, V′) = 0 ⇒ U ′ = V′. Assume now that W(U ′, V′) = 0. By definition, there exists

a feasible transport plan P∗ ∈ Π(U ′, V′) such that ⟨D,P∗⟩ = 0. Given that both D and P are non-negative, it
immediately follows that for all 8, 9 , either D8, 9 = 0 or P∗8, 9 = 0. Since D represents the transportation cost, and
assuming that D8, 9 > 0 for 8 ≠ 9 , it immediately follows that P∗8, 9 = 0 whenever 8 ≠ 9 . Consequently, the transport
plan P∗ must be diagonal; that is, P∗8, 9 = 0 for all 8 ≠ 9 .*

Since P∗ is a valid transport plan, it must satisfy the marginal constraints:
<

∑
9=1

P8, 9 = P8,8 = a
′
8 , 8 = 1, 2, ..., =,

=

∑
8=1

P8, 9 = P9, 9 = b
′
9 , 9 = 1, 2, ...,<.

(8)

Given that P∗ is diagonal, these constraints simplify to a′8 = b
′
8 for all i . Therefore, the distributions U ′ and V′

must be identical. This completes the proof.
�
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Algorithm 1 The computational procedure of WBM.
Input: D(q): the pair-wise distance matrix, q: the propensity scores to optimize, o the treatment indicators.
Parameter: n : the strength of entropic regularization; g : the convergence threshold; ℓmax: the maximum iterations.
Output: WBMq(q): the WBM metric of the propensity scores.
1: a′, b′ ← Initialize(q, o)
2: K← exp(−D(q)/n)
3: ℓ ← 1, uℓ ← 1= , vℓ ← 1<
4: while ℓ < ℓmax do
5: ℓ ← ℓ + 1
6: uℓ ← a′/(Kvℓ−1)
7: vℓ ← b′/(KTuℓ)
8: if ∥uℓ − uℓ−1∥22 + ∥vℓ − vℓ−1∥22 < g then
9: Break

10: P∗ ← diag(uℓ)Kdiag(vℓ)
11: WBMq(q) ← ⟨D

(q),P∗⟩

Comparedwith other distributional discrepancymeasures,Wasserstein discrepancy offers distinct advantages in
terms of numerical stability and interpretability. For instance, when compared to Kullback-Leibler (KL) divergence,
Wasserstein discrepancy remains applicable given distributions with disjoint supports; when compared to
maximum mean discrepancy (MMD), Wasserstein discrepancy offers a more interpretable method for quantifying
discrepancies by considering the “cost” of transporting mass from one distribution to another. These advantages
motivate our use of Wasserstein discrepancy in this work.

3.4 Computation of Wasserstein Balancing Metric
In this section, we discuss the computation of the WBM in Definition 3.1. The WBM formulation involves solving
a linear programming problem, which can be addressed using the simplex algorithm [1, 12]. However, the simplex
algorithm introduces non-differentiability, which prevents the direct optimization of propensity estimators. To
overcome this limitation, we employ the Sinkhorn algorithm [2, 10, 13], which makes the WBM differentiable
with respect to the propensity scores. The detailed steps of this process are outlined in Algorithm 1 and are
justified as follows.

The initial step involves setting up the mass vectors as a′ = Softmax([1/@1, . . . , 1/@n]) and b′ = Softmax([1/(1−
@1), . . . , 1/(1 − @m)]) (step 1). The softmax operation ensures that the mass vectors sum to 1, transforming them
into valid probability vectors, which are necessary for defining the OT problem. Afterwards, theWBM formulation
is refined by introducing an entropic regularizer following Cuturi [10]:

P∗ ∶= arg min
P∈Π(U ′,V′)

⟨D(q),P⟩ − nH(P), (9)

whereH(P) ∶= −∑8, 9 P8 9(log(P8 9)−1) is the entropy term, and n controls the strength of the entropic regularization.
This regularization makes the problem n-convex and computationally tractable using the Sinkhorn algorithm. To
solve this, define f ∈ R= and g ∈ R< as the Lagrangian multipliers. The Lagrangian of the problem is:

Φ(P, f, g) = ⟨D(q),P⟩ − nH(P) − ⟨f,P1= − a⟩ − ⟨g,P
T1< − b⟩
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According to the first-order condition of constrained optimization problem, the optimal transport matrix P∗

satisfies:

P∗8 9 = exp(
f8
n
) ∗ exp(−

D(q)8 9
n
) ∗ exp(

g9
n
), (10)

which immediately follows from mΦ(P,f,g)
mP8 9

∣
P=P∗ = D

(q)
8 9 + Y log (P∗8 9) − f8 − g9 = 0. For convenience, we introduce

the variables u8 ∶= exp ( f8n ), v 9 ∶= exp (
g9
n
), and K8 9 ∶= exp(−D(q)8 9

n
). The optimal transport matrix can be written

as:
P∗ = diag(u)Kdiag(v).

Meanwhile, the transport matrix must satisfy the mass-preserving constraints:

P∗1< = diag(u)Kdiag(v)1< = a, P⊺1= = diag(v)Kdiag(u)1= = b.

or equivalently, let ⊙ be the entry-wise multiplication of vectors, we have:

u⊙ (Kv) = a and v⊙ (KTu) = b,

which is known as the matrix scaling problem. An intuitive approach to solving these constraints is through
iterative updates, as outlined in steps 3-7 of Algorithm 1:

uℓ+1=
a

Kvℓ
and vℓ+1=

b

KTuℓ+1
(11)

These updates are repeated until the convergence criterion is met. Once convergence is achieved, the optimal
transport matrix P∗ is computed using (10). The WBM is then evaluated as the inner product of P∗ and D(q)

(steps 10-11 in Algorithm 1). Since P∗ is derived through tensor multiplication involving the mass vectors a′ and
b′, the resulting WBM is differentiable with respect to the propensity score estimate q. This property allows for
the optimization of the propensity score estimator using gradient-descent-based approaches.

4 WBM-ENHANCED DEBIASED RECOMMENDATION

4.1 WBM-Enhanced Counterfactual Estimators
The WBM is designed to assess and improve the balancing capability of learned propensity scores, rather
than directly training an unbiased prediction model. In this section, we introduce the IPS-WBM and DR-WBM
estimators, which incorporate WBM as a regularizer to enhance the standard IPS and DR estimators. This
integration enhances the balancing capability of propensity scores without introducing additional bias. The
IPS-WBM estimator is defined as

LIPS−WBM = E(D,8)∈D [
>D,84D,8

^ ⋅ @̂D,8
] + _b ⋅WBMq(q̂) (12)

where ^ = ∣O∣/∣D∣ is a constant incorporated for deriving unbiasedness, _b is the weight of WBM. Similarly, the
DR-WBM estimator is defined as

LDR−WBM = E(D,8)∈D [4̂D,8 +
>D,8(4D,8 − 4̂D,8)

^ ⋅ @̂D,8
] + _b ⋅WBMq(q̂) (13)

which extends LIPS−WBM by incorporating an imputation arm that aims to accurately estimate the error 4D,8 in D.
The output of this arm, denoted 4̂D,8 , is corrected by 4D,8 − 4̂D,8 inO, where the actual 4D,8 is observed. The accuracy
of 4̂D,8 is improved through an auxiliary learning task defined as:

Limp = E(D,8)∈D [
>D,8 4̂

2
D,8

q̂D,8
] (14)
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Well-optimized propensity scores ensure the unbiasedness of IPS-WBM and DR-WBM. According to Theorem
2, both proposed estimators are unbiased if the WBM is effectively minimized to zero. Therefore, incorporating
WBM does not introduce bias to IPS and DR estimators, and can enhance the balancing property of the learned
propensity scores.

Theorem 2. (Unbiasedness property) Given the WBM is minimized, i.e., WBMq(q̂) = 0, we have:
(a) LIPS−WBM is an unbiased estimator of Lideal;
(b) LDR−WBM is an unbiased estimator of Lideal, whether the imputed errors are accurate or not.

Proof. Suppose @̂D,8 is the learned balancing score that makes WBMq(q̂) = 0. That is, the wasserstein distance
between the treated population O inversely weighted with ?̂ and the ideal population is zero. For LIPS−WBM, we
have

E(D,8)∈D[LIPS−WBM] = E(D,8)∈D [
>D,84D,8

^ ⋅ @̂D,8
] + _b ⋅WBMq(q̂)

= E(D,8)∈D [
>D,84D,8

^ ⋅ @̂D,8
] (15a)

= E(D,8)∈O [
4D,8

@̂D,8
] (15b)

= E(D,8)∈D [4D,8] = Lideal, (15c)

where (15a) follows immediately from the balancing penalty WBMq(q̂) = 0, and the estimator degrades to the
canonical IPS estimator; (15b) follows from ^ = ∣O∣/∣D∣ and >D,8 = 1 only for (D, 8) ∈ O; (15c) holds since the
expectation on the treated population O that is inversely weighted by the balancing score @̂ is equivalent to that
on the target population D, given the balancing score satisfies WBMq(q̂) = 0.

Similarly, if the balancing property holds, the LDR−WBM degrades to the canonical DR estimator, and the
expectation over O approximates the expectation over D almost surely:

E(D,8)∈D[LDR−WBM] = E(D,8)∈D [4̂D,8 +
>D,8(4D,8 − 4̂D,8)

^ ⋅ @̂D,8
] + _b ⋅WBMq(q̂)

= E(D,8)∈D [4̂D,8 +
>D,8(4D,8 − 4̂D,8)

^ ⋅ @̂D,8
] (16a)

= E(D,8)∈D [4̂D,8] + E(D,8)∈O [
4D,8 − 4̂D,8

@̂D,8
] (16b)

= E(D,8)∈D [4D,8] = Lideal. (16c)

�

4.2 Overall Workflow
In this section, we detail the procedure for employing the proposed estimators to achieve debiased recommendation.
The steps are formally outlined in Algorithm 2. The process begins with retrieving the embeddings of user D and
item 8 from the embedding table and concatenating them. It follows by acquiring estimates for the treatment
(@̂D,8 ), potential outcome (ÂD,8 ), and imputation error (4̂D,8 ) through parametric models, denoted as 5prop, 5pred and
5imp in steps 1-4. We then compute the actual error 4D,8 within the treated population O in step 5.

The specification of the prediction error, denoted as Lpred, depends on the selected counterfactual estimator, to
mitigate the selection bias and achieve the unbiased estimation of the ideal learning objective Lideal:
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Algorithm 2 The computational procedure for IPS-WBM and DR-WBM.
Input: (D, 8) ∈ D: the user-item pairs; >D,8 : the treatment label; AD,8 : the outcome label for (D, 8) ∈ O.
Parameter: _b: the weight of WBM.
Output: Lpred: the learning objective.
1: GD,8 ← Embedding(D, 8).
2: @̂D,8 ← 5prop(GD,8).
3: ÂD,8 ← 5pred(GD,8).
4: 4̂D,8 ← 5imp(GD,8).
5: 4D,8 ← −AD,8 log ÂD,8 − (1 − AD,8) log(1 − ÂD,8).
6: @̃D,8 ← StopGradient(@̂D,8).
7: if model is IPS-WBM then
8: Lpred ←

1
∣D∣ ∑(D,8)∈D

>D,84D,8
@̃D,8

+ _b ⋅WBMq(q̂).
9: else if model is DR-WBM then

10: 4̂D,8 ← 4D,8 − 4̂D,8 .
11: LDR ←

1
∣D∣ ∑(D,8)∈D 4̂D,8 +

>D,8 4̂D,8
@̃D,8

+ _b ⋅WBMq(q̂).

12: Limp ← E(D,8)∈D [
>D,8 4̂

2
D,8

@̃D,8
]

13: Lpred ← LDR + Limp.

● For the IPS estimator, Lpred is defined according to (12). Importantly, the gradient of 4D,8 with respect to
@̂D,8 is stopped to prevent unintended impacts of 4D,8 on the learning of @̂D,8 .
● For the DR estimator, Lpred is defined according to (13). This approach includes refining the accuracy of

the imputation model, encapsulated by the imputation loss Limp.

5 EXPERIMENTS
In this section, we conduct experiments to investigate the research questions as follows:

● Performance. How does WBM perform compared to the prevalent unbiased estimators in recommendation?
Section 5.2 compares IPS-WBM and DR-WBM against state-of-the-art debiased recommendation baselines
using public datasets.
● Balance. Does WBM enhance the capability of balancing populations? Section 5.3 offers a case study to

compare the balancing capability of NLL and WBM.
● Efficacy. Does WBM enhance the performance of debiased recommendation? Section 5.4 incorporates a

comparative study to showcase the advantage of WBM over NLL with varying weights.
● Sensitivity. Is WBM sensitive to hyperparameters? Section 5.5 presents a sensitivity analysis of the key

hyperparameters to provide a comprehensive understanding of the proposed method.
● Complexity. Is WBM computationally intensive? Section 5.6 compares the computational complexity

given different experimental settings.

5.1 Setup
5.1.1 Dataset. There are three datasets involved in this study, and their details are summarized in Table 2 and
detailed as follows.

● Music [46] contains 311,704 biased ratings for training, which involve 15, 400 users and 1, 000 items.
Additionally, 5400 users rate 10 randomly selected items, yielding 54, 000 unbiased ratings for evaluation.
The user-item pairs with ratings greater than 4 are seen as positive, and others are viewed as negative.
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Table 2. Description of employed datasets.

Dataset # User # Item # Interaction Density Domain Threshold
Music 14,877 1,000 15,400 0.812% Music 4
Coat 290 300 6,960 5.333% Clothing 4

KuaiRec 1,411 3,327 4,676,570 0.996% Video 2

● Coat [46] is a public dataset which consists of 290 users and 300 items; each user subjectively selects 24
items to rate based on their preference, yielding 6,960 biased ratings in the training set. Additionally, each
user rates 16 items that are randomly selected, yielding 4,640 unbiased ratings for model evaluation. The
user-item pairs with rating greater than 4 are seen as positive, and others are viewed as negative.
● KuaiRec [15] is a public large-scale industrial dataset, which consists of 4,676,570 video watching ratio

records from 1,411 users for 3,327 videos. The user-item pairs with ratings less than two are viewed as
negative, and those with ratings of 2 or higher are viewed as positive.

5.1.2 Baselines. We take the matrix factorization (MF) [20] as the base model, and compare the proposed
IPS-WBM and DR-WBM with the following training methodologies:

● Naïve [20, 36] calculates the prediction loss in the treated population, using the naive learning objective
in (6).
● Multi-IMP [36] mirrors the Naïve approach but includes untreated samples as negative samples for

outcome estimator training.
● ESMM [36] employs a multitask approach which implicitly optimizes the outcome estimator.
● IPS and DR [46] calculate the prediction error using the standard IPS and DR estimator.
● AS-IPS [45] incorporates a clipping strategy to DR to balance bias and variance.
● Multi-EIB [36] imputes the prediction error in D and corrects its imputation in O.
● Multi-IPS and Multi-DR [67] enhance IPS and DR by learning the propensity in a multitask learning

manner.
● ESCM2-IPS and ESCM2-DR [53] fuse IPS and DR with the ESMM learning paradigm.
● SDR [29] bounds the bias and variance of DR under small propensity scores.
● DR-JL[60] enhances DR by jointly learning the prediction model and the error imputation model.
● MRDR-JL [17] reduces the variance of DR while retaining its double robustness.
● DR-MSE [11] enables to balance the bias and variance of DR flexibly for better generalization performance.

5.1.3 Training Protocol. We employ matrix factorization as the propensity model. All experimental procedures
are executed using the PyTorch framework, utilizing the Adam optimizer [19] for its adaptive learning rate capa-
bilities and efficient convergence properties. The experiments are conducted on a hardware platform comprising
two Intel(R) Xeon(R) Platinum 8383C CPUs operating at 2.70 GHz and an NVIDIA GeForce RTX 4090 GPU.
Hyperparameter optimization is systematically performed following the standard protocol [25, 27] to enhance
model performance. The balancing weight _b is set to 1 for overall performance comparison and investigated
specially in Section 5.4. The representation function q is acquired by concatenating the user and item embeddings.
The learning rate is tuned within {0.001, 0.005, 0.01, 0.05, 0.1}; the batch size is tuned within {32, 64, 128, 256} for
the Coat dataset and {1024, 2048, 4096} for the Music and KuaiRec datasets; the embedding size in the matrix
factorization model is tuned over {2, 4, 8, 16, 32, 64} for Coat and {16, 32, 64, 128, 256, 512} for Music and KuaiRec.
For baselines where the results are available in related works [27, 55], we use the reported results.

5.1.4 Evaluation Protocol. We primarily use the area under the receiver operating characteristic curve (AUC),
which measures the model’s ability to distinguish between positive and negative classes, to assess the ranking
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Table 3. Comparative study on debiased recommendation on real-world datasets.

COAT MUSIC KuaiRec

Method AUC NDCG@5 F1@5 AUC NDCG@5 F1@5 AUC NDCG@50 F1@50

Naive 0.680±0.006 0.616±0.011 0.470±0.006 0.651±0.005 0.626±0.001 0.300±0.001 0.741±0.003 0.724±0.003 0.566±0.002
ESMM 0.686±0.004 0.638±0.005 0.485±0.008 0.601±0.002 0.665±0.001 0.328±0.001 0.721±0.006 0.764±0.003 0.576±0.004
Multi-EIB 0.604±0.012 0.540±0.007 0.419±0.008 0.664±0.002 0.637±0.003 0.319±0.001 0.660±0.002 0.624±0.003 0.529±0.002
Multi-IMP 0.713±0.003 0.613±0.011 0.462±0.004 0.627±0.003 0.661±0.003 0.328±0.002 0.735±0.006 0.719±0.007 0.573±0.006
IPS 0.710±0.003 0.603±0.009 0.450±0.008 0.656±0.002 0.633±0.002 0.308±0.002 0.750±0.003 0.734±0.003 0.572±0.002
Multi-IPS 0.711±0.005 0.604±0.008 0.463±0.009 0.651±0.002 0.667±0.001 0.331±0.002 0.748±0.003 0.738±0.008 0.579±0.003
CVIB 0.718±0.004 0.640±0.007 0.486±0.008 0.685±0.001 0.645±0.003 0.315±0.001 0.758±0.001 0.752±0.001 0.575±0.001
AS-IPS 0.712±0.008 0.627±0.010 0.470±0.007 0.661±0.003 0.641±0.004 0.322±0.003 0.746±0.009 0.733±0.004 0.585±0.006
ESCM2-IPS 0.721±0.005 0.645±0.009 0.490±0.005 0.653±0.003 0.653±0.002 0.322±0.002 0.779±0.001 0.767±0.003 0.592±0.002
IPS-WBM 0.740∗±0.001 0.686∗±0.002 0.481±0.006 0.705∗±0.002 0.686∗±0.002 0.339∗±0.001 0.783±0.011 0.792∗±0.008 0.600∗±0.006
DR 0.710±0.006 0.632±0.003 0.471±0.008 0.656±0.009 0.669±0.007 0.330±0.005 0.745±0.004 0.718±0.003 0.574±0.003
Multi-DR 0.719±0.006 0.634±0.009 0.480±0.007 0.686±0.001 0.660±0.003 0.323±0.002 0.752±0.001 0.767±0.012 0.581±0.003
DR-JL 0.714±0.007 0.646±0.009 0.486±0.006 0.682±0.001 0.660±0.002 0.326±0.001 0.759±0.002 0.757±0.004 0.582±0.005
MRDR-JL 0.715±0.004 0.653±0.006 0.492±0.005 0.684±0.001 0.660±0.003 0.326±0.002 0.762±0.003 0.751±0.002 0.579±0.003
DR-MSE 0.715±0.001 0.630±0.009 0.480±0.006 0.685±0.001 0.648±0.004 0.316±0.002 0.779±0.003 0.773±0.004 0.589±0.001
ESCM2-DR 0.730±0.009 0.642±0.010 0.489±0.010 0.688±0.002 0.669±0.002 0.326±0.002 0.788±0.001 0.796±0.004 0.606±0.002
SDR 0.719±0.006 0.631±0.008 0.475±0.006 0.687±0.001 0.650±0.001 0.316±0.001 0.764±0.003 0.791±0.003 0.595±0.002
DR-WBM 0.744∗±0.001 0.697∗±0.002 0.514∗±0.002 0.713∗±0.000 0.691∗±0.001 0.343∗±0.001 0.802∗±0.002 0.808∗±0.001 0.611∗±0.000

Note: The bold and underlined fonts indicate the best and second-best performance for IPS and DR methods, respectively.
“*” indicates the metrics where IPS-WBM (DR-WBM) outperforms the best baselines based on IPS (DR), with ?-value< 0.05
under two-sample t-test.

performance of the models. To further compare performance in top-k recommendation, we introduce Normalized
Discounted Cumulative Gain at k (NDCG@k), which evaluates the quality of the ranking by considering the
positions of relevant items, and F1@k, which balances precision and recall within the top k recommendations, as
supplementary metrics. Here, k is set to 5 for COAT and MUSIC and 50 for KuaiRec follow Li et al. [27].

5.2 Overall Performance
The debiased recommendation performance of IPS-WBM and DR-WBM is evaluated against competing models in
Table 3. Notable findings are summarized as follows:

● The biased approaches exhibit practical performance across datasets, with ESMM exhibiting the best
overall performance among these approaches. On the Coat dataset, for instance, ESMM achieves a 0.88%
higher AUC and 3.19% higher F1@5 over the Naïve method. In comparison to Multi-IMP, which also
incorporates untreated samples as negative samples, ESMM performs better in Top-k metrics. The efficacy
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of ESMM can be attributed to its multitask learning nature, as well as its implicit modeling of potential
outcome which bypasses the selection bias issue.
● Most debiased baselines significantly outperform biased methods. For instance, on the COAT dataset, the

unbiased method ESCM2-IPS records an AUC of 0.721, a 5.10% improvement over ESMM’s AUC of 0.686.
This trend is even more pronounced for top-k metrics, where ESCM2-IPS achieves NDCG@5 = 0.645 and
an F1@5=0.490, significantly surpassing those of biased methods. The superior performance of unbiased
methods across AUC and Top-k metrics underscores the importance of debiased learning in real-world
recommendation tasks.
● DR estimators outperform their IPS counterparts, demonstrating the benefits of error imputation tech-

niques. For instance, ESCM2-DR on the COAT dataset achieves an AUC of 0.730, a 1.23% improvement
over ESCM2-IPS’s AUC of 0.721. These improvements are also evident in Top-k metrics; for example, on
the KuaiRec dataset, Multi-DR achieves NDCG@50 of 0.767, surpassing Multi-IPS’s NDCG@50 of 0.738
by 3.92%. The consistent performance boost of DR methods can be attributed to their ability to reduce
variance while leveraging prediction error from both treated and untreated populations, leading to more
stable and accurate recommendations in real-world applications.
● Our proposed methods, IPS-WBM and DR-WBM, demonstrate superior performance compared to other

IPS and DR methods. For example, on the KuaiRec dataset, IPS-WBM and DR-WBM achieve the AUC of
0.783 and 0.802, outperforming ESCM2-IPS and ESCM2-DR by 0.51% and 1.77%, respectively. In terms
of Top-k metrics, DR-WBM achieves NDCG@50 = 0.808 and F1@50 = 0.611 on KuaiRec, outperforming
other debiasing methods significantly. The superior performance is attributed to the improved balancing
capacity of learned propensity scores by WBM, which effectively handles selection bias and improves
debiased recommendation performance.

5.3 A Case Study on the Balancing Capability of WBM
To showcase the efficacy of WBM’s learned propensity scores to balance populations, a case study is conducted
in Figure 3, using simulated datasets consistent with those in Figure 2. The primary observations are summarized
below.

● Firstly, the learned propensity scores prove effective in balancing biased populations. The inverse propen-
sity tends to be higher for samples within the overlapping fields and smaller for others, which effectively
reduces selection bias and diminishes the discrepancy between the reweighted populations.
● Secondly, WBM exhibits better capacity to balance biased populations compared to NLL. Specifically, the

discrepancies between populations reweighted by WBM’s propensity scores are significantly smaller than
those observed in Figure 2, with relative reduction of Wasserstein discrepancy at least 60%. It is attributed
to the efficacy of OT to directly minimize discrepancy between biased populations.
● Thirdly, the incorporation of the entropic regularizer, which enables the differentiation of WBM with

respect to propensity scores, influences the calculation of discrepancy. As illustrated in Figure 3 (b),
as n decreases, the matching strategy is refined, and the discrepancy converges to the Wasserstein
discrepancy [2]. Nevertheless, as n decreases, the difference in discrepancy becomes smaller, particularly
when compared to the discrepancies observed in NLL-based cases. Therefore, it is plausible to incorporate
entropic regularizer to make WBM differentiable to propensity scores.
● Finally, WBM can be effectively optimized through stochastic gradient methods. As shown in Figure 3 (c),

WBM reduces swiftly as we increase the number of epochs to minimize WBM, with WBM being 2.606 in
the initial stage and 0.439 after optimizing 100 epochs.
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(c) Results with varying numbers of epochs to minimize WBM, with epochs being 0, 10, 50 and 100 from left to right.

Fig. 3. The balancing capability of the balancing scores calculated by minimizing the proposed WBM. The light area indicates
the (uniform) weight of samples in U and V ; the dark area indicates the weight of samples in the reweighted sets U ′ and V

′.
The dashed lines indicate the transport matrix.W(U ′, V′) indicates the discrepancy between the reweighted sets.

5.4 Ablation study
In this section, we examine the effectiveness of incorporating WBM to improve debiased recommendation
performance. Table 4 presents the results for different WBM weights, denoted as _b, on the Coat and Music
datasets. Key observations are summarized as follows.

● Incorporating WBM effectively enhances debiased recommendation performance. For example, increasing
_b from 0 to 1 on the Coat and Music datasets results in a 3.93% and 8.75% AUC increase, respectively.
These enhancements are also reflected in Top-k metrics, with NDCG@5 improving by 7.61% on Coat and
2.69% on Music. A similar trend is observed for the DR-based estimator, with NDCG@5 increasing by
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Table 4. Varying weight of WBM (_b) results.

Coat Music
_b AUC NDCG@5 F1@5 AUC NDCG@5 F1@5

IP
S-
W

BM

_b = 0 0.711 0.604 0.463 0.651 0.667 0.331
_b = 0.05 0.739 0.650 0.487 0.707 0.682 0.336
_b = 0.1 0.739 0.650 0.487 0.708 0.686 0.340
_b = 0.5 0.739 0.650 0.487 0.708 0.685 0.338
_b = 1 0.739 0.650 0.487 0.706 0.685 0.338
_b = 5 0.739 0.649 0.486 0.702 0.679 0.335
_b = 10 0.740 0.649 0.483 0.696 0.679 0.335

D
R-

W
BM

_b = 0 0.719 0.634 0.480 0.686 0.660 0.323
_b = 0.05 0.744 0.692 0.514 0.719 0.679 0.364
_b = 0.1 0.744 0.692 0.514 0.719 0.678 0.364
_b = 0.5 0.744 0.693 0.515 0.719 0.678 0.364
_b = 1 0.744 0.693 0.514 0.719 0.679 0.363
_b = 5 0.744 0.693 0.514 0.719 0.680 0.364
_b = 10 0.744 0.692 0.513 0.719 0.681 0.364

9.30% on Coat and 2.87% on Music. These results underscore the critical role of balancing capability in
propensity score learning.
● The WBM-enhanced estimators exhibit notable improvements across a wide range of _b values. For

instance, the IPS-WBM estimator on the Music dataset shows gains of over 8% in AUC and 2% in NDCG@5
for _b values between 0.05 and 1. A notable phenomenon is that the improvement is consistent under
different values of _, which is also observed in prevailing studies [26]. We attribute this phenomenon
to the nature of the proposed WBM, which emphasizes the balance of reweighted distributions rather
than the accuracy of propensity score estimation. In this case, large values of _ strengthen the balancing
property without causing overfitting, which makes consistent performance improvement. The slight
performance drop in some cases could be due to the optimizer’s instability when handling excessively
large weights.

5.5 Hyper-parameter Sensitivity Study
In this section, we examine the influence of critical hyperparameters on the proposed estimators. The results on
the Coat and Music datasets are presented in Figure 4 and 5, respectively. Key observations are summarized as
follows.

● The update rate ([) controls the volume of model parameter updates each epoch. Overall, the DR-WBM
estimator is robust to variations in the update rate across a wide range of values on both datasets, whereas
the IPS-WBM estimator exhibits an increasing-then-decreasing trend as [ increases. An update rate of
approximately 0.03 and 0.003 was found to be optimal for IPS-WBM on the Coat and Music datasets,
respectively, effectively balancing update stability and speed.
● The batch size (B) determines the number of samples used in each parameter update, with sizes ranging

from 64 to 4096 examined. For both models, there is a consistent improvement in F1@5 and NDCG@5
as the batch size increases up to B = 256. However, increasing the batch size beyond 512 does not yield
further performance gains and introduces unnecessary computational overhead. Therefore, a batch size
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Fig. 4. Hyperparameter sensitivity study with F1@5 and NDCG@5 on the Coat dataset, with colored lines for means and
shaded areas for 99.9% confidence intervals.

of around 256 to 512 offers an effective balance between performance and computational efficiency on
both datasets.
● The embedding size (D) controls the capacity of the parametric estimator. Overall, the IPS-WBM approach

benefits from larger embedding sizes. On the Coat dataset, increasing D from 4 to 256 consistently
improves F1 and NDCG metrics. On the Music dataset, performance remains relatively stable across a
wide range of D values. In contrast, the DR-WBM estimator is sensitive to the embedding size. On the
Coat dataset, performance improves as D increases up to 16 but significantly declines at D = 64. Similarly,
on the Music dataset, a substantial performance drop is observed when D exceeds 64. This sensitivity may
stem from the incorporation of an error imputation model, which is challenging to train and prone to
overfitting, thereby limiting the scalability of DR-based estimators to larger embedding sizes.

5.6 Complexity Study
In this section, we investigate the running time cost of calculating the proposed WBM metric, which primarily
involves solving the optimal transport (OT) problem in (7) using the Sinkhorn algorithm [10]. The time complexity
is mainly influenced by the batch size (B), embedding size (D), and convergence threshold (g). An empirical
analysis of the OT problem solution is presented in Figure 6, with key observations summarized below.

● The batch size directly impacts the scale of the optimization problem and, consequently, the computational
complexity of calculating WBM. As shown in the left panel of Figure 6, the running time increases
super-linearly with batch size, reaching nearly 16 seconds for B = 512 with a convergence threshold
of g = 1e−9. This demonstrates a limitation of the WBM metric, where large batch sizes result in high
computational cost.
● The embedding dimension influences the size of the pairwise distance matrix D in (7), which grows

with increasing embedding size. This requires more iterations to reach the convergence threshold, as
demonstrated in both panels of Figure 6. For instance, in the left panel, the running time increases from
approximately 14 seconds to 16 seconds as the embedding size grows from 8 to 32.
● The convergence threshold determines the number of iterations required for the algorithm to terminate.

The right panel of Figure 6 shows the running time for different values of g , with B = 64. The running
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Fig. 5. Hyperparameter sensitivity study with F1@5 and NDCG@5 on the Music dataset, with colored lines for means and
shaded areas for 99.9% confidence intervals.
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Fig. 6. Running time of calculating WBM given different settings of batch size (B), embedding size (D) and convergence
threshold (g). Different colors indicate different embedding sizes. The dashed lines indicate the average from 5 runs, and the
shaded areas indicate 99.9% confidence intervals.

time increases as g decreases, reaching nearly 10 seconds at g = 1e−9. However, relaxing the threshold
to 1e−7, which is sufficient to ensure the accuracy of the balancing result, reduces the running time to
under 1 second. Thus, adjusting the stopping threshold offers a practical trade-off between accuracy and
running time, providing a strategy to reduce computational cost in large-scale applications.

6 RELATED WORK
Recommendation systems serve as cornerstones in industries such as e-commerce [53], advertising [39, 66], and
social media [50, 70]. However, the data collected for these systems are observational rather than experimental,
leading to selection bias. This bias creates a discrepancy between the training and test datasets, causing trained
models to perform suboptimally during online deployment. To mitigate selection bias, debiased recommendation
methods seek to estimate and optimize an unbiased learning objective using the biased training data [59, 61]. This
area has garnered substantial attention [26, 30, 67], focusing on two primary challenges [8]: (1) how to estimate
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the propensity score; (2) how to derive an unbiased learning objective based on the propensity score. In this
section, we provide a comprehensive review of the key works to address these challenges.

6.1 Learning Objective for Debiased Recommendation
Thedevelopment of unbiased estimators stems from the inverse propensity score (IPS) approach [43]. IPS addresses
selection bias by inversely weighting the prediction error using the propensity score associated with each sample
in the treated population. Since samples that are less likely to be treated have lower propensity scores, IPS assigns
them higher weights, thereby reducing selection bias [26]. Theoretically, IPS provides an unbiased estimator of
the ideal learning objective when the propensity scores are accurately estimated [43, 53]. However, IPS is prone
to high variance when propensity scores are small, and it can produce biased estimates if the propensity scores
are inaccurately estimated. Both issues limit its effectiveness in real-world recommendations [45].

To counteract these defects, the doubly robust (DR) estimator was introduced, enhancing IPS with error
imputation techniques. It reduces variance compared to IPS under mild assumptions and is less dependent on
accurate propensity score estimation. Subsequent advancements have focused on further reducing variance and
increasing resilience to small propensity scores. For example, Li and Sui [31] treat the propensity score as a user
self-selection mechanism and propose a machine unlearning approach to reduce the effect of users with more
non-random self-selection behavior; Guo et al. [17] propose a more robust DR estimator that employs a double
learning procedure to minimize estimation variance; Li et al. [23] introduce an ensemble learning framework to
achieve multiple robustness, while Li et al. [29] develop a cyclic optimization technique to ensure model stability
and calibration, effectively reducing variance and enhancing stability for small propensity scores. Additionally,
Song et al. [48] suggest filtering out false error imputations to decrease variance and improve tail bounds, and Li
et al. [24] demonstrate methods to simultaneously reduce bias and variance in DR estimators when the error
imputation model is misspecified.

6.2 Propensity Estimation for Debiased Recommendation
Accurate estimation of propensity scores is critical for the efficacy of the IPS and DR estimators [26, 30]. Various
strategies have been employed to learn these propensity scores. Initially, some studies estimated propensity scores
using a power-law function of item popularity, based on the number of interactions an item receives [44]. While
these methods are straightforward to implement and interpret, their oversimplified assumptions often lead to
biased recommendations. A more prevalent approach involves estimating propensity scores via logistic regression,
as introduced by Rosenbaum and Rubin [43] and widely adopted in recommendation practices [3, 11, 22, 67].

On this basis, one line of research has focused on enhancing the accuracy of propensity estimation by integrating
advanced learning techniques, such as joint optimization [53, 67] and alternative training [72]. Recently, they
have innovatively incorporated a small subset of unbiased data during training [25, 27], effectively addressing
missing confounders and substantially improving estimation quality with minimal data collection costs. Another
line of research aims to learn propensity scores that ensure the unbiasedness of the recommendation model under
non-ideal conditions, where there exists user and item model misspecifications [27] and noisy feedbacks [28].

7 CONCLUSION
In this work, we focus on the challenge of selection bias in recommendation systems stemming from the use of
observational data. We highlight the limitations of existing propensity estimation methods that rely on negative
log-likelihood minimization, which may not sufficiently correct for bias. To overcome this, we introduce the
WBM, a novel approach to measure and enhance the balancing capacity of propensity scores by minimizing
the Wasserstein distance between reweighted and ideal distributions. We develop the IPS-WBM and DR-WBM
estimators by integrating WBM as a regularizer into the standard IPS and DR frameworks, enhancing their
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effectiveness without introducing additional bias. Our extensive experiments on real-world datasets demonstrate
that incorporating WBM significantly improves the balancing capability of propensity scores, leading to better
debiasing performance in recommendation tasks. These findings underscore the potential of directly addressing
distributional discrepancies in propensity estimation and open avenues for future research in developing more
advanced propensity learning techniques for debiased recommendations.

Limitations and Future Work. This study focuses on selection bias in recommendation systems. However, in
industrial settings, additional biases such as position bias and popularity bias are prevalent. Extending the WBM
framework to account for these biases could further enhance recommendation performance. Additionally, while
the selected Wasserstein discrepancy effectively quantifies distributional differences, the calculation process is
computationally intensive, particularly with large batch sizes common in practice. Future work could explore
alternative discrepancy measures that maintain similar statistical properties while offering reduced computational
complexity, thereby improving the scalability and applicability in large-scale debiased recommendation scenarios.
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